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How to make the gravitational action on noncompact space finite

Sergey N. Solodukhin*
Spinoza Institute, University of Utrecht, Leuvenlaan 4, 3584 CE Utrecht, The Netherlands

~Received 8 October 1999; published 20 July 2000!

The recently proposed technique to regularize the divergences of the gravitational action on noncompact
space by adding boundary counterterms is studied. We propose a prescription for constructing boundary
counterterms which are polynomial in the boundary curvature. This prescription is efficient for both asymp-
totically anti–de Sitter and asymptotically flat spaces. Being mostly interested in the asymptotically flat case
we demonstrate how our procedure works for known examples of noncompact spaces: Eguchi-Hanson metric,
Kerr-Newman metric, Taub-NUT, Taub-bolt metrics, and others. Analyzing the regularization procedure when
the boundary is not a round sphere we observe that our counterterm helps to cancel the larger divergence of
the action in the zero and first orders in small deviations of the geometry of the boundary from that of the round
sphere. In order to cancel the divergence in the second order in deviations a new quadratic in boundary
curvature counterterm is introduced. We argue that the cancellation of the divergence for finite deviations
possibly requires an infinite series of~higher order in the boundary curvature! boundary counterterms.

PACS number~s!: 04.60.2m, 11.10.Gh, 97.60.Lf
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I. INTRODUCTION

The classical dynamics of gravitational field~metric gmn

on d-dimensional manifoldMd) is determined by the
Einstein-Hilbert~EH! action

WEH@g#52
1

16pG S E
Md

~R12L!12E
]Md

K D , ~1.1!

where the boundary term proportional to the extrinsic cur
tureK of the boundary]M should be added in order to mak
the variational procedure of the action~when only metric but
not its normal derivative is fixed on the boundary! well de-
fined @1,2#. When the manifoldM is noncompact one consid
ers a sequence of compact manifoldsMr with the boundary
]Mr parametrized by the radiusr such thatMr→M for large
r. The functional~1.1! on a noncompact manifoldM then
should be understood as a result of the limitWEH@Mr
→M #. It is, however, a well-known problem that this limi
ing procedure is not well defined sinceWEH@Mr # diverges in
the limit of larger. Therefore, the limiting procedure shou
be accompanied by some regularization. The traditional w
@3# of handling this problem is to subtract a contribution
some reference metricg0 that matches suitably th
asymptotic and topological properties of the metricg. The
choice of the metricg0 is interpreted as fixing the vacuum
state. However, such a reference metric does not always
which makes this subtraction procedure quite uncertain.

It was realized recently that when the spaceM is asymp-
totically AdS ~rather than asymptotically flat! one can take
an alternative route. In the context of the AdS-conform
field theory~CFT! correspondence a general analysis~based
on previous mathematical works@4,5#! of the divergences o
the EH action for AdS space was done in@6#. Inspired by the
AdS-CFT correspondence, Balasubramanian and Kraus@7#
have proposed to add to the action~1.1! a counterterm which
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is a functional of the curvature invariants of the induc
metric hi j on ]Mr . The role of this term~which does not
affect the gravitational equations in the bulk! is to cancel
appropriately the larger divergence appearing inWEH@Mr #.
The countertermWct@hi j # can be arranged as an expansion
powers of the curvature of the boundary metric. The first f
terms are the following@6–8#:

Wct
bk5

1

16pGE
]Mr

d
Ah F2~d22!

l
1

l

d23
R

1
l 3

~d25!~d23!2 S R i j
2 2

~d21!

4~d22!
R 2D1•••G ,

~1.2!

whereRi j andR are, respectively, the Ricci tensor and Ric
scalar of the boundary metric, andl is the AdS radius related
to the cosmological constant asL5(d21)(d22)/2l 2. The
terms~1.2! are sufficient to cancel divergences ford<7. On
the other hand, the leading divergence in anyd is always
removed by the term~first introduced in Eq.@9#! in Eq. ~1.2!
which is proportional to the area of the boundary.1 It should
be mentioned that introducing counterterms which are po
nomial in the boundary curvature one is able to cancel
divergences of the action~1.1! but not the logarithmic one
@appearing when (d21) is even#. The later divergence can
be canceled by adding a counterterm which is not poly
mial in curvature. For example, ford53 it is the term
R ln R that should be added. In higher dimensions there
ambiguity in choosing such terms. Up to this subtlety t
procedure of introducing the counterterms~1.2! is universal
and well defined.

1The extrinsic curvature of the asymptotic boundary of AdS sp
is constant,K5(d21)/l . Therefore, the first term in Eq.~1.2! can
be presented as a surface integral ofK. For d53 this was observed
in @10#
©2000 The American Physical Society16-1



t a
e
n
re

d-

n
t

se

er

h
y

op
o
h
gu

f
n
w

n

yti
f t

a
V
ta
-
re

a
d
u
s

y

his
lly
u-

be
lid.

ase
are

ytic
m-
the
ose

in
In

lize
f
ad,
Eq.
-
l
t
g
The
lly
the

ut
is

s

ory
he
the
le

er-
lly

to
ire
is

SERGEY N. SOLODUKHIN PHYSICAL REVIEW D62 044016
Encouraged by this example one could try to construc
appropriate boundary term which cancels the leading div
gence for asymptotically flat space. This term can be fou
but it is not an analytic function of the boundary curvatu
@11,12#

Wct
LM52

cLM

16pG E
]Mr

AR. ~1.3!

The constantcLM depends on the topological type of boun
ary at large r. For the Schwarzschild like metric~when
boundary is topologically S13Sd22) one has cLM5
22A(d22)/(d23). Not requiring the counterterm to be a
analytic function of the curvature one can also construc
term interpolating between expressions~1.2! and ~1.3!
@12,13#:

Wct
int5

1

16pG

2~d22!

l E
]Mr

A11
l 2

~d23!~d22!
R1•••.

~1.4!

Indeed, for larger the boundary curvatureR vanishes and
we need to take the limit of smallR in Eq. ~1.4! in order to
get Eq.~1.2!. On the other hand, the asymptotically flat ca
is obtained by taking the limit of largel in Eq. ~1.4!. The
expression~1.3! then is reproduced. We stress that this int
polation exists only for the choice of the constantcLM in Eq.
~1.3! as in the case of the Schwarzschild black hole. T
boundary then isS13Sd22. For other types of the boundar
the expression~1.4! does not match Eq.~1.3! in the limit of
large l.

There are, however, reasons to think that it is not an
tion to drop the analyticity in the proposed procedure
introducing the boundary counterterms. The form of t
counterterms then is not unique and, in fact, quite ambi
ous. Indeed, for asymptotically flat space, not onlyAR but
any function (R i j

2 )1/4, (R i jkl
2 )1/4 or even higher roots o

higher power curvature invariants can be chosen as a ca
date for the counterterm. In the asymptotically AdS case
also can take as a counterterm any functionf ( l 2R) that ap-
proaches„11@ l 2/2(d23)(d22)#R… for small R. Among
these functions, in particular, there are ones which do
have the well-defined flat space (l→`) limit.

Another reason why it is not desirable to use nonanal
boundary counterterms appears from the consideration o
EH term in quantum theory. Any quantum field makes
contribution to the EH action. In fact, this contribution is U
divergent and we have to renormalize the Newton’s cons
G ~and cosmological termL) in order to handle these diver
gences. The natural question is then whether the structu
the classical actionWEH1Wct is preserved under quantum
corrections and whether it remains the same after renorm
ization. For the EH action~1.1!, this question was addresse
in @14#. It was found that the exact balance between the b
and boundary parts in the quantum action is the same a
the classical action~1.1!. Hence the renormalization of onl
Newton’s constant~the L term was dropped in@14# but this
does not affect the main conclusion! is sufficient to regular-
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ize both the bulk and boundary UV divergences. In fact t
statement is quite obvious in the case of matter minima
coupled to gravity. One just has to impose Dirichlet or Ne
mann conditions on the quantum field on the boundary]M .
In the nonminimal case the boundary condition should
chosen of a mixed type in order to make this statement va
Analyzing now this problem for the actionWEH1Wct with
the counterterm in the form~1.3! or ~1.4! it is hard to imag-
ine how this structure can be preserved in the quantum c
since only terms analytic in the boundary curvature
known to appear in the quantum effective action~at least in
its UV divergent part! on a manifold with a boundary.

Concluding our brief analysis we see that the nonanal
boundary counterterms are likely not allowed in an una
biguous and universal procedure of the regularization of
gravitational action. The purpose of this paper is to prop
another way of constructing the counterterms remaining
the class of the functions which are analytic in curvature.
the asymptotically flat case, we are not going to genera
the AdS prescription~1.2! in the part of the dependence o
the boundary counterterm on the boundary metric. Inste
keeping the general structure of the counterterm as in
~1.2!, we define a scale parameterl * ~analogous to the pa
rameterl in the AdS case! which characterizes the globa
geometry of the space~in fact, it is the coordinate invarian
diameterof the space! and can be used in the constructin
the counterterms in the same fashion as in the AdS case.
prescription, thus, works universally both in asymptotica
AdS and asymptotically flat cases and deals only with
analytic structure of the counterterms.

II. PROPOSAL

It should be noted that the counterterm~1.2! is not an
off-shell quantity. In fact, it contains some information abo
the asymptotic bulk geometry. Namely, the space-time
supposed to be anti–de Sitter space with radiusl. The role of
the parameterl in AdS space is twofold. First, it measure
the curvature of the bulk geometry@Ricci scalarR52d(d
21)/l 2]. Second, it measures the size of the space:l is that
quantity which relates the volume of AdS space,V(Mr), and
area of its boundary,A(]Mr), in the limit of larger, i.e., l
;V(Mr)/A(]Mr). This relation is the key one@15# in the
holographic correspondence between the gravitational the
in the bulk of AdS space and conformal field theory on t
boundary. As we said above, our idea is to introduce
parameterl * which for asymptotically flat space plays a ro
similar to that of the parameterl in the AdS case. Since it is
not possible in general to find any scale parameter univ
sally related to the curvature if the space is asymptotica
flat, it is the holographic relation which we are going
generalize. Note that in our prescription we do not requ
the metric to satisfy any equations of motion and in th
sense it is an off-shell prescription. We only demand that~in
the case of zero cosmological constant! the curvature of the
space-time die sufficiently fast with larger so that the bulk
integral*Mr

R converges in the larger limit. The only diver-
gence of the gravitational action~1.1! then comes from the
boundary term 2*]Mr

K. Note also that we will be mostly
considering the leading divergence of the action.
6-2
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HOW TO MAKE THE GRAVITATIONAL ACTION ON . . . PHYSICAL REVIEW D 62 044016
Consider the compact manifoldMr with boundary]Mr
parametrized by ‘‘radial’’ coordinater in an appropriate co-
ordinate system. LetV(Mr) be the invariant volume ofMr
and A(]Mr) be the area of the boundary]Mr . Define the
diameter l* of the manifoldMr as follows:

l * 5
V~Mr !

A~]Mr !
. ~2.1!

Consider now a sequence of compact manifoldsMr ap-
proaching the noncompact manifoldM in the limit of larger.
The diameterl * then, in general, becomes a function ofr.
Defying the gravitational actionWgr@M # as the limit of the
actions Wgr@Mr # for large r we want it to be finite asr
→`. The action we propose takes the form

Wgr@Mr #5WEH@Mr #1Wct@]Mr #, ~2.2!

where, as in the AdS case~1.2!, the boundary counterterm

Wct@]Mr #52
1

16pG

c~g!

l r*
E

]Mr

Ah ~2.3!

is proportional to the area of the boundary.
First, we want to demonstrate that by adding the coun

term~2.3! we do not change the Einstein equations followi
from the EH action. We fix finiter and consider small varia
tions of the metric in the bulk assuming the induced me
on the boundary]Mr is fixed. The diameter~2.1! changes
under variation of the metric in the bulk. At first sight
seems that this may result in rather complicated equat
when the action~2.2! is varied. However, it is quite surpris
ing that the presence of the extra term~2.3! has the same
effect in the field equations as that of the effective cosm
logical termLe f f52c(g)/2(l * )2:

dWgr52
1

16pGE
Mr

dgmnS Rmn2
1

2
gmnR2Le f f gmnD .

~2.4!

So for the boundary placed at finiter the extra boundary term
~2.3! shows up in the gravitational equations in the form
the finite cosmological termLe f f . Considering the sequenc
of boundaries parametrized by increasingr we find a se-
quence of bulk metrics described by Einstein equations w
decreasing~since l * is growing asr for asymptotically flat
space! cosmological constant. In the limit of infiniter the
quantity Le f f disappears and the gravitational equations
main unaffected.

In order to show that the gravitational action~2.2!, ~2.3! is
indeed less divergent than Eq.~1.1! and determine the coef
ficient c(g) let us consider onMd the coordinate system
(x,xi ,i 51, . . . ,d21) where the metric looks as

ds25dx21hi j ~x,x!dxidxj . ~2.5!

The compact manifoldMr is determined by the range of th
radial coordinate, 0<x<r . The boundary]Mr stays atx
5r andhi j (r ,x) is the metric induced on the boundary.
04401
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The area of the boundary]Mr and the volume ofMr are
given by

A~]Mr ![A~r !5E Ah~x,r !dd21x,

V~Mr ![V~r !5E r

A~x!dx. ~2.6!

Assume that for larger the area functionA(r ) is represented
by the series

A~r !5A0r g1A1r g211Brg21ln r 1•••, ~2.7!

whereA0 ,A1 ,B are some coefficients and the ellipsis stan
for the subleading terms. Then for the volume ofMr we have
that

V~r !5
A0

g11
r g111S A1

g
2

B

g2D r g1
B

g
ln r 1•••. ~2.8!

The parameterg.0 is the coordinate invariant; it show
how the area of]Mr ~or volume ofMr) grows for larger.
The radiusl * defined by the relation~2.1! then reads

l * 5
r

g11
1S 1

g~g11!

A1

A0
2

1

g2

B

A0
D

1
1

g~g11!

B

A0
ln r 1•••. ~2.9!

For the extrinsic curvature of the boundary we have*]Mr
K

5] rA(r ), so that the leading divergence of the EH action
large r is proportional tor g21. Assuming that the bulk par
of Eq. ~2.2! converges for larger @this restricts the metric
hi j (r ,x) to grow asymptotically not faster thanr 2] we find
that the boundary part of Eq.~2.2! is given by

Wgr
boundary52

1

16pG S 2] rA~r !1
c~g!

l * ~r !
A~r ! D .

~2.10!

Taking now the limit of infiniter we find that the leading
divergence of the gravitational action cancels provided
choose the constantc(g) to be

c~g!52
2g

g11
, ~2.11!

so that the regularized action

Wgr5
1

8pG
r g22

1

g
B1O~r g23! ~2.12!

is finite if g<2. In some cases the logarithmic term in th
expansion~2.7! is absent. Then the leading term in the acti
~2.12! is of the orderr g23. Thus, the adding the counterter
~2.3! guarantees the cancellation of the leading divergen
In order to remove the divergences still present in the ac
6-3
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SERGEY N. SOLODUKHIN PHYSICAL REVIEW D62 044016
one has to introduce extra counterterms such as the terml *
*]MR or (l * )3*]MR 2. We consider such terms in Secs.
and IV.

In order to determinel * we have to have information
about the whole manifoldM. However, for the cancellation
of the divergences in the gravitational action only t
asymptotic behavior ofl * is important. Therefore, it would
be desirable to define another quantityl a* as the asymptotic
value of l * for large r. It can be used~instead ofl * ) in
constructing the boundary counterterm~2.3!. The advantage
of usingl a* is that the counterterm~2.3! then depends only on
the asymptotic properties of the bulk metric and is not s
sitive to what happens inside the manifold. The quantityl a* is
not, however, uniquely defined since it depends on h
many terms@as in Eq.~2.9!# we want to keep in the larger
expansion ofl * . On the other hand, the freedom in choosi
the coordinates in the asymptotic metric~2.5! also may result
in an ambiguity in the definition ofl a* . In all cases these
ambiguities affect only the subleading terms inl a* and, even-
tually, in the gravitational action. Note in this context th
picking up the first three terms in the expansion~2.9! and
using this in the counterterm~2.3! we get exactly the sam
result ~2.12! for the the leading part of the gravitational a
tion as whenl * is used. Of course, we can add more su
leading terms not changing this conclusion.

We still need to find an unambiguous and coordinate
variant notion of the asymptotic value ofl * . In order to get
an idea of such a notion consider the larger ~i.e., valid out-
side of some compact, large enough region of manifoldM )
expansion of the diameterl * done in any appropriate coor
dinate system. Ther-dependent terms in this expansion—f
instance, the functions$r , ln r,1,1/r ,1/r 2, . . . %—can be con-
sidered as forming a basis in functional space and the larr
expansion ofl * is just a decomposition ofl * along this
basis. Among the elements constituting the basis there
ones which grow infinitely withr. In the above example only
the functionsr and lnr are such elements. Then, the proje
tion of l * onto the subspace spanned by the asymptotic
growing elements is what we will call the leading asympto
value l a* . For the expansion~2.9! we have

l a* 5
r

g11
1

1

g~g11!

B

A0
ln r .

Note that by definition the constant term is not included
l a* . The quantityl a* appears to be unambiguous and coor
nate invariant.

The gravitational action regularized by the counterte
~2.3! with l a* then reads

Wgr
a 5

1

8pG
~A12B!r g221O~r g23!. ~2.13!

For g52 it takes the finite value which is different from Eq
~2.12!. In many examples of four-dimensional metrics w
consider below, the parametersB and A1 are related asB
52A1. Then the limit of larger in the expressions~2.12! and
~2.13! for g52 gives rise to results opposite in sign,Wgr
04401
-

w

-

-
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-
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-

52Wgr
a . It happens that—namely, forl a* —our regularization

procedure gives the same result as the standard subtra
method. In all examples we present below the correspond
regularized action is a non-negative quantity. As a sim
illustration of our regularization procedure consider thed
54 Schwarzschild metric

ds25g~r!dt21
dr2

g~r!
1r2dsS2

2 , g~r!512
2m

r
,

~2.14!

where 0<t<2pbH , bH54m. It takes the form~2.5! after
performing the coordinate transformationx5*rdr/Ag(r).
Asymptotically, we havex5r2m ln r. The compact space
Mr is defined as 0<x<r . The area of the boundary]Mr
behaves as

A~r !52pbHS2~r 22mr22mr ln r 1••• ! ~2.15!

for large r. In Eq. ~2.15! we recognize the expansion~2.7!
with g52. The diameterl * defined above and its leadin
asymptotic values are

l * 5
r

3
2

m

3
ln r 1

m

3
1•••,

l a* 5
r

3
2

m

3
ln r . ~2.16!

Respectively, we have, for the regularized action~2.12! and
~2.13!,

Wgr52
4pm2

G
, Wgr

a 5
4pm2

G
. ~2.17!

In Wgr
a we recognize the standard expression for the action

the Schwarzschild metric@2,18,12#.
The parameterg in Eqs.~2.7!–~2.9! is an important char-

acteristics of the asymptotic geometry of the manifoldMd.
Demanding the bulk metric to approach asymptotically
~locally! flat metric, g is restricted by topology of the
asymptotic boundary]M . In the simplest case, when the siz
of ]Md grows equally in all directions@for example, if]Md

is a (d21)-sphere and the asymptotic metric onMd is ds2

5dr21r 2dsSd21

2 ], we haveg5d21. However,g can be

less than (d21) if, for example, asymptotic metric isds2

5( i 51
n dzi

21dr21r 2dsSd2n21

2 , where each coordinatezi is

compact. Theng5d2n21. It seems to follow from these
examples thatg is related to the dimension of the spher
component in the boundary]M . In d54 the locally flat met-
ric may take the formds25dr21r 2(du21sin2udf2)1(dt
12ncosudf)2. The surface of constantr is then the Hopf
fiber bundleS3→S2 with fiber S1. Locally it looks as a direct
productS13S2. However, the appropriate identifications~in
t and f) and overlapping coordinate patches give the s
face of constantr the topology ofS3. In this caseg52 is the
same as for the boundaryS13S2.

In the asymptotically AdS case, the expansion~2.7! is not
valid since the area
6-4
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HOW TO MAKE THE GRAVITATIONAL ACTION ON . . . PHYSICAL REVIEW D 62 044016
A~r !5e(d21)r / l l d21A0@11O~e2r / l !#

grows exponentially withr. As a result, the quantityl * as-
ymptotically takes the constant value

l * 5
l

d21
1O~e2r / l !. ~2.18!

Therefore, the notion of the leading asymptotic valuel a* de-
fined above is not good for asymptotically AdS spaces.
this case, we have to define it as the first, constant, term
the larger expansion, so that we havel a* 5 l /(d21). Using
this quantity in the counterterm~2.3! we reproduce correctly
the first term in the AdS expression~1.2! provided the value
g5d22 is used to define the constantc(g), Eq. ~2.11!.
Note that in both the asymptotically AdS and asymptotica
flat cases our prescription forl a* is to take the leading part in
the larger expansion forl * .

It is interesting to note that using the quantityl * in Eq.
~1.2! we are able to cancel all divergences of the action
cluding the logarithmic one. In the AdS case the size of
asymptotic boundary always grows in equal proportion in
directions when the boundary approaches infinity, so thag
should depend only on dimensiond and be the same for a
possible metrics on the boundary. Note that it is kind
mystery thatg in the AdS case should be the same as in
asymptotically flat case with oneS1 component in the
boundary~i.e., as in the Schwarzschild black hole case!. This
becomes even more surprising when we recall that for A
space both the bulk and boundary parts in the EH ac
diverge while for the asymptotically flat space only t
boundary part causes the divergence. The same is also
for the Lau-Mann prescription with the counterterm~1.3!
where the coefficientcLM ~for boundary being product of a
sphere and S1 factors! should in general becLM5
22Ag/(g21). Only for g5d22 ~the boundary isS1
3Sd22) does there exist a correspondence between Eq.~1.3!
and the AdS prescription~1.4!. There must be deep reaso
for the coincidence ofg ’s in these two cases.

III. EXAMPLES

A. Asymptotically „globally or locally… Euclidean spaces

The asymptotically~globally! Euclidean space is define
@16# to be one admitting a chart$xm% such that for
(xmxm)1/25r.r0 the metric can be written as

gmn5S 11
a2

r2D 2

dmn1OS 1

r3D . ~3.1!

It is known that the only asymptotically globally Euclidea
solution of the Einstein equations is flat space. Usually
space-time is considered as a reference metric with respe
which one determines the contribution of a curved metric
the action. In this way, one automatically~by definition! as-
signs zero gravitational action to the flat space. It is the
part of the positive action theorem that in the class of asym
totically Euclidean metrics the gravitational action is ze
only if the metric is flat. In our method, however, flat spa
04401
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stands on equal ground with any other space-times and
not meaningless to ask what is the gravitational action for
flat space-time itself. Choose a metric on flat spaceRd to
take the standard formdsRd

2
5dx21x2dsSd21

2 and determine

the compact spaceMr
d as 0<x<r . The spaceMr

d has vol-
ume V(r )5(r d/d)Sd21 and its boundary]Mr

d is a round
sphereSd21 with areaA(r )5r d21Sd21 ~we denoteSn to be
area of ann-dimensional sphere,S352p2), so that the di-
ameter ~2.1! of Mr

d is l * 5r /d. We have g5d21 and
c(g)522(d21)/d for Mr

d . Substituting these ingredient
into formula~2.10! we find that the regularized gravitationa
action ~2.2! indeed vanishes for flat space.

In our analysis we are not restricted to consider only
lutions of the Einstein equations and are interested in
metric for which the bulk integral*Mr

R converges for large
r. An example of an asymptotically Euclidean metric wi
vanishing Ricci scalarR is the wormhole metric@16#

ds25S 11
a2

4r2D 2

~dr21r2dsS3

2 !, ~3.2!

wheredsS3

2 is the metric of a standard three-sphere. Ob

ously, the condition~3.1! is satisfied for~3.2!. In fact, the
metric ~3.2! describes space with two asymptotically Eucli
ean regions atr→` andr→0 with a minimal three-sphere
located atr5a/2. One can bring the metric~3.2! to the form
~2.5! by introducing the radial coordinatex5r2a2/4r.
Then Eq.~3.2! reads2

ds25dx21~x21a2!dsS3

2 . ~3.3!

Since the manifold has two asymptotic regions~at large
negative and positive values ofx), we define the compac
manifold Mr in a symmetric way as2r<x<r . The bound-
ary ]Mr then has two components atx52r and x51r ,
respectively. The manifoldM then is approached in the sym
metric limit whenr→`. The areaA(r ) of the boundary]Mr
is A(r )52(r 21a2)3/2S3. The integral of the extrinsic curva
ture reads*]Mr

K5] rA(r )56r (r 21a2)1/2S3 and the EH ac-

tion WEH52(3/4pG)r (r 21a2)1/2S3 diverges asr 2 for
large r. Calculating thediameter l* , Eq. ~2.1!, of the mani-
fold Mr we find

l r* 5
r

4
1

3

8

a2

r
1OS 1

r 3D . ~3.4!

In this caseg53 andc(g)52 3
2 . It seems that our regular

ization procedure applied to the metric~3.3!, according to
Eq. ~2.12!, should lead to the action which grows linear wi
r. However, for the metric~3.3! the coefficientsA1 andB in
the expansion~2.7! vanish. Therefore, calculating the reg
larized action~2.2!, ~2.3!, ~2.10! we get the finite value

2Being extended to higher dimensiond the metric~3.3! has scalar
curvatureR5(d21)(d24)a2/(x21a2)2 and the integral*Mr

R di-
verges asr d24 for large r.
6-5
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Wgr52
3pa2

4G
~3.5!

when we take the limit of infiniter. The leading asymptotic
value for Eq. ~3.4! is l a* 5r /4. Using this quantity in the
boundary counterterm we find

Wgr
a 5

3pa2

4G
.

If outside of a compact region the metric approaches
standard flatRd metric with boundarySd21 identified under
some discrete subgroup ofSO(d) with a free action onSd21,
such metric is asymptotically locally Euclidean. Note that
both the locally and globally Euclidean metrics the para
eterg in the larger expansions~2.7!, ~2.8! takes its maximal
possible valueg5d21. An example of ad54 asymptoti-
cally locally Euclidean solution of the Einstein equations
the Eguchi-Hanson metric@16,17#

ds25S 12
a4

r4D 21

dr21S 12
a4

r4D
3

r2

4
~dc1cosudf!21

r2

4
~du21sin2udf2!,

~3.6!

where in order to remove the apparent singularity atr5a
one should identifyc modulo 2p rather than modulo 4p as
is usual for Euler angles onS3. This identification makes the
surface of constantr.a into projective spaceRP3, i.e., a
three-sphere with antipodal points identified. The surfacr
5a is a two-sphere. DefyingMr as 0<r<r we find

V~r !5
r 4

32S 12
a4

r 4 DS38 ,

A~r !5
r 3

8 S 12
a4

r 4 D 1/2

S38 , ~3.7!

whereS385* sinududfdc. From Eqs.~3.7! the diameterl *
is found to be

l r* 5
r

4 S 12
a4

r 4 D 1/2

.

The vector normal to]Mr has the components„nr5(1
2a4/r 4)1/2,0,0,0… and we have that

E
]Mr

K5nr] rA~r !5
3

8
r 22

1

8

a4

r 2 1OS 1

r 6D .

Thus, the EH action for the metric~3.6! diverges asr 2. Cal-
culating the regularized action~2.10! ~in this caseg53) we
find that the counterterm~2.3! precisely compensates ther 2

divergence while the rest of the terms vanish~as a4/r 2) in
the limit of large r. Thus, the metric~3.6! has vanishing
gravitational action,Wgr50. One obtains the same result
the asymptotic quantityl a* is used in the counterterm.
04401
e

r
-

B. Asymptotically flat spaces

In the class of asymptotically flat metrics we include
metrics describing space-time with the boundary at infin
being anS1 bundle over anSd22, where theS1 fiber ap-
proaches a constant length. So the growth of the area of
boundary for larger is due to the spheric componentSd22
and we haveg5d22 for all spaces of this class. Ford54
such bundles are labeled by the first Chern number. I
vanishes, the boundary has the topology of the direct prod
S13Sd22. Otherwise, its topology is more complicated. Th
boundary then is a squashed sphere. The fiberS1 in the
bundle is usually due to compactified Euclidean time.

1. Schwarzschild metric ind dimensions

A generalization of the four-dimensional metric~2.14! to
higher dimensions is the metric

ds25g~r!dt21
dr2

g~r!
1r2dsSd22

2 , g~r!512S m

r D d23

,

~3.8!

where 0<t<2pbH , bH52m/(d23). Though the analysis
can be done in terms of a metric of the type~2.5!, the calcu-
lation is simpler for a metric of the form~3.8!. In this coor-
dinate system we define the compact manifoldMr asm<r
<r . The area of]Mr and volume ofMr are

A~r !52pbHSd22r d22g1/2~r !,

V~r !52pbHSd22

1

d21
~r d212md21!.

~3.9!

For larger the areaA(r ) grows asr d22 so that3 g5d22.
The diameterl * of Mr is

l * ~r !5
r

d21
g21/2~r !F12S m

r D d21G . ~3.10!

In the coordinate system~3.8! the integral of the extrinsic
curvature of the boundary is given by the formula*]Mr

K

5nr] rA(r ), wherenr5g1/2(r ) is the nonzero component o
vector normal to]Mr . For finite r the regularized action
~2.2! reads

Wgr52
bHSd22

8G S ~d23!md23

2
2~d22!

r 2 md21
g~r !

12~m/r !d21D .

In the limit of larger it goes to the finite value

3Sinceg5d22, it seems that the regularized action~2.12! should
diverge asr g22. However, it happens that for the metric~3.8! the
only nonzero~growing with r ) terms in the expansion~2.7! for the
area arer g22 and r. Therefore, the action is indeed finite.
6-6
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Wgr52
~d23!md23

8G
bHSd22 . ~3.11!

The asymptotic value of the diameter~3.10! is l a* 5r /(d
21). It can be used in constructing the boundary coun
term ~2.3!. The corresponding regularized action

Wgr
a 52

bHSd22

8G
$~d23!md23

12~d22!r d23@g~r !2g1/2~r !#%

exactly coincides with the one obtained within the stand
subtraction procedureW52(1/8pG)*]Mr

(K2K0) pro-
vided the reference metric is the metric of flat space w
K05(d22)/r . For larger we obtain

Wgr
a 5

md23

8G
bHSd22 . ~3.12!

2. Taub-NUT and Taub-bolt metrics

For d54 the boundary at infinity, which is the fibe
bundle ofS1 overS2, may be nontrivial if the correspondin
Chern number is nonzero. It is the case for the Ta
Newman-Unti-Tamburino~Taub-NUT! and Taub-bolt met-
rics which can be present in the form@17#

ds25 f ~r!~dt12n cosudf!21
dr2

f ~r!
1~r22n2!dsS2

2 ,

~3.13!

where the metric function is

f ~r!5
r2n

r1n
~3.14!

for the Taub-NUT metric and

f ~r!5
~r2n/2!~r22n!

~r22n2!
~3.15!

for the Taub-bolt metric. The Euclidean timet in Eq. ~3.13!
should be identified with period 8pn while the anglef is
identified as modulo 2p. In fact one should take two differ
ent coordinate patches which are nonsingular at the n
pole (u50) and south pole (u5p), respectively. The over
lapping of these patches gives a surface of constantr.r1

(r15n for Taub-NUT andr152n for Taub-bolt!, the to-
pology of three-sphere@with „t/(2n),u,f… being Euler
angles#.

The manifoldMr in the sequence of spaces approach
the spaceM is defined by the ranger1<r<r of the radial
coordinate. The square root of determinant of metric~3.13!,
Ag5(r 22n2)sinu, does not depend on the metric functio
f (r ). Therefore for both Eqs.~3.14! and~3.15! the volume of
the spaceMr is

V~r !532p2nF S r 3

3
2

r1
3

3 D 2n2~r 2r1!G . ~3.16!
04401
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The area of the boundary]Mr is

A~r !532p2n~r 22n2! f 1/2~r !. ~3.17!

The diameter ofMr then is

l TN* 5
1

3
~r 12n!Ar 2n

r 1n
5

r

3
1

n

3
2

n2

2r
1O~1/r 2!

for Taub-NUT space and

l TB* 5
r

3
1

5

12
n2

7

32

n2

r
1O~1/r 2!

for Taub-bolt space. In both cases the leading asympt
value isl a* 5r /3. Calculating the regularized gravitational a
tion one obtains

Wgr
a 52Wgr5

4pn2

G
~3.18!

for the Taub-NUT metric and

Wgr
a 52Wgr5

5pn2

G
~3.19!

for the Taub-bolt metric. The expressions forWgr
a agree with

the results obtained in@12# within the square root prescrip
tion ~1.3! and with the calculation performed in@8# using the
AdS prescription. In the later case the expressions~3.18! and
~3.19! are recovered in the limit of infinite AdS radiusl. The
difference between Eqs.~3.19! and ~3.18! yields the results
of @18,19#. On the other hand, Eqs.~3.18!, ~3.19! agree with
the much older result by Gibbons and Perry@20# obtained by
an ‘‘imperfect match’’ of the Taub-NUT~Newman-Unti-
Tamburino! solution to Euclidean flat space.

3. Kerr-Newman metric

The Euclidean Kerr-Newman metric parametrized
massm, electric chargeq, and the rotation parametera takes
the form

ds25grr dr21guudu21gttdt212gtfdtdf1gffdf2,

grr 5
r2

D
, guu5r2, gtt5r22~D1a2sin2u!,

gtf5r22sin2u~r 22a22D!, gff5r22@~r 22a2!2

1Da2sin2u#sin2u,

D~r !5r 22a22q222mr, r25r 22a2cos2u. ~3.20!

This metric has vanishing scalar curvature although the R
tensor vanishes only ifq50. The Euclidean metric~3.20!
can be obtained from the Lorentzian metric by taking t
Wick rotation of time and supplementing this by the para
eter transformationa→ıa, q→ıq. The Euclidean instanton
~3.20! is a regular manifold forr>r 1 , where r 15m
6-7
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1Am21a21q2 is the positive root of the equationD(r )
50, provided one makes certain identifications. The an
coordinatef should be identified modulo 2p. We must also
identify points (t,f) with (t12pbH ,f12pVbH), where

bH5
~r 1

2 2a2!

Am21a21q2
, V5

a

r 1
2 2a2 .

For the metric~3.20! one has thatAg5r2 sinu. The bound-
ary of the manifoldMr we define by the equationr 5const.
We then find, for the volume and area,

V~r !5
8

3
p2bH@r 32r 1

3 2a2~r 2r 1!#,

A~r !54p2bhD1/2~r !I ~r !, ~3.21!

whereI (r )5*21
1 dxAr 22a2x2. From Eqs.~3.21! we find

l * ~r !5
r

3
1

m

3
1S m2

2
1

q2

6
2

a2

9 D 1

r
1O~1/r 2!

for the diameter ofMr . The asymptotic value isl a* 5r /3.
The vector normal to the boundary]Mr has the compo-

nentnr5(D/r2)1/2, so the extrinsic curvature of the boun
ary K5¹mnm5(1/Ag)] r(Agnr). For the metrichi j induced
on ]Mr we have Ah5Ag(D/r2)1/2 and hence, KAh
5@rD(r )/r2#sinu11

2D8sinu. Performing the integration
over angleu and taking into account that*dfdt54p2bH
we obtain

E
]Mr

KAh54p2bHFD~r !

a
lnS r 1a

r 2aD1D8~r !G .
Calculating now the regularized action we get

Wgr
a 52Wgr5pmbH . ~3.22!

This reproduces previous results@2,18# obtained within the
subtraction regularization procedure.

4. Flat space in spheroidal coordinates

In all examples considered so far the sequence of bou
aries]Mr was chosen in a natural way for a given metric
manifold M. However, there of course exists freedom
choose different shapes for the boundaries]Mr . The impor-
tant question arises as to how the limiting value of the re
larized actionWgr@Mr→M # depends on the limiting se
quence of the boundaries chosen. To address this que
we consider flatd-dimensional space. In Sec. III A we dem
onstrated that choosing]Mr to be a round (d21)-sphere of
radiusr the limiting value of the gravitational action is jus
zero. In this section we want to recalculate the action for
space, choosing the set of boundaries]Mr to be now a se-
quence of spheroidal surfaces. We choose the spheroida
ordinates on flat space where the metric reads
04401
le

d-

-

ion

t

co-

ds25
r2

D~r !
dr21r2du21D~r !sin2udf21r 2cos2udsSd23

2 ,

~3.23!

whereD(r )5r 22a2, r25r 22a2cos2u. The metric~3.23! is
obtained as thet5const part of the (d11)-dimensional
metric @21# generalizing the Kerr metric by setting the ma
to zero. It is regular ifr>a. For Eq. ~3.23! we haveAg
5r2r d23sinu cosd23u. We define the surface]Mr by the
equation4 r 5const. Further calculations go along the sam
lines as for the Kerr-Newman metric. We have for the v
ume and area, respectively,

V~r !5
4pSd23

d~d22!
r dS 12

a2

r 2 D ,

A~r !54pSd23

r d21

~d22! F12S d21

d D a2

r 2

2
1

d~d12!

a4

r 4 1O~a6/r 6!G . ~3.24!

The larger expansion for the diameterl * is

l * ~r !5
r

d S 12
1

d

a2

r 2 2
~d222!

d2~d12!

a4

r 4 1O~a6/r 6! D .

~3.25!

Hence, its asymptotic value isl a* 5r /d as it should be for
g5d21. For the extrinsic curvature of]Mr we haveKAh
5nr] r(Agnr), wherenr5(D/r2)1/2 is a component of the
normal vector. After performing the integration overt, f,
andu we get

E
]Mr

KAh54pSd23r d22

3S d21

d22
2

~d21!

d

a2

r 2

2
2

d~d12!

a4

r 4 1O~a6/r 6! D .

Computing in the leading order the regularized action

Wgr
a 52

Sd23

2G

~d21!

d~d22!
a2r d24@11O~a2/r 2!#,

Wgr5
Sd23

2G

~d11!

d2~d12!
a4r d26@11O~a2/r 2!#,

~3.26!

4The surface of constantr is a spheroidal surface with curvatur
depending on the angleu. For d53 we have, in particular,R
52r 2/(r 22a2 cos2 u)2. Note that the in the limit of infiniter the
surface tends to a round sphere.
6-8
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we find that the result is different forWgr and Wgr
a . The

actionWgr is less singular: the leading term isr d26. Let us
concentrate on analysis of the regularized actionWgr . We
observe that ford<5 the limiting value of the action is zero
This is in agreement with our computation done in Sec. II
for the boundary being a round sphere. Ford56 the larger
behavior of the action is dominated by the constant term
the limiting value is finite. Ford>7 the gravitational action
diverges asr d26. These observations are similar to the on
made in@13#. We see that ford>6 the limiting value of the
action appears to depend on the choice of the limiting
quence of boundaries. A possible resolution of this probl
is to find a new counterterm which may remove the lead
term in Eqs.~3.26!. It is not difficult to find the appropriate
counterterm among terms quadratic in the boundary cu
ture. Indeed, the invariantS[R i j

2 2@1/(d21)#R 2 identi-
cally vanishes for the round (d21)-dimensional sphere„in
this caseRi j 5@(d22)/r 2#g i j …. Moreover, its first variation
dS due to a small deviation of the metric from that of th
round sphere also identically vanishes. Therefore, the g
metric invariantS is nonzero only in second order with re
spect to the deformation of the metric of the round sphe
The spheroidal surface is ana2-dependent deformation of th
round sphere and we can expect that in the leading o
~smalla or larger ) the invariantS is proportional toa4. This
is exactly what we need for cancellation of the divergen
~3.26! also proportional toa4. A detail computation shows
that for larger we have

S5
~d23!2

~d21!
@~d22!cos~u!422cos~u!2

1~d22!#
a4

r 81OS a6

r 10D .

Integrating this expression over angles we find that
boundary integral

Wct152
1

16pG

d2~d21!

~d23!2~d22!
~ l * !3E

]Mr

S R i j
2 2

1

d21
R 2D

~3.27!

is that additional counterterm which can be added to
gravitational action in order to cancel the divergence~3.26!.
Some similarity of the counterterm~3.27! and the quadratic
in the boundary curvature counterterm in the AdS presc
tion ~1.2! should be noted.

IV. MORE OF THE BOUNDARY GEOMETRY

A. Asymptotic geometry of Ricci flat space

The universality of the AdS prescription~1.2! valid for
any metrichi j (x) on the asymptotic boundary of AdS spa
is based on the possibility to well pose the Dirichlet boun
ary problem for the Einstein equations with positive cosm
logical constant. Indeed, the solution of the Einstein eq
tions is completely determined once one fixes the indu
metric on the boundary of the space~more precisely, one
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needs to find the manifold of negative constant curvat
which has a given conformal structure at infinity!. An exis-
tence theorem for such an Einstein metric was proved in@5#.
One can explicitly obtain an asymptotic expansion of bu
metric near infinity starting from any metric at infinity@6#.
Technically, one uses the distinguished coordinate sys
@4# where the bulk metric takes the form

ds25
l 2dr2

4r2 1
1

r
@hi j ~x!1hi j

(1)~x!r

1hi j
(2)~x!r21•••#dxidxj , ~4.1!

wherer is a radial coordinate, andr50 determines the in-
finity of space. Once one picks the first termhi j (x) the Ein-
stein equations determine the other terms in ther expansion,
hi j

(1)(x),hi j
(2)(x), . . . , aslocal covariant functions of the met

ric hi j (x). That is why the divergences~due to the integra-
tion in the action over smallr) of the EH action are com-
pletely determined by the asymptotic metrichi j (x) and
expressed as local covariant functions ofhi j (x). The idea of
introducing the counterterms determined on the regulari
~staying at r5e) boundary @with boundary metric
(1/ehi j (x)# then appears quite naturally@7#.

To what extent can the same be done in the asymp
cally flat case? The Einstein equations then determine
metric with vanishing Ricci tensor. In analogy with th
anti–de Sitter case we can fix the metrichi j (x) at infinity of
the space and try to determine the metric in the bulk
solving the equationRmn50. In particular, we can use th
coordinate system (r,x) where the metric takes a form sim
lar to Eq.~4.1!:

ds25dr21r2S hi j ~x!1hi j
(1)~x!

1

r

1hi j
(2)~x!

1

r2 1••• Ddxidxj ; ~4.2!

the infinity of space is at the infinite value ofr. @Note that
the boundary area for the metric~4.2! grows asrd21 so that
the metric is characterized by the valueg5d21 of the pa-
rameterg introduced in Sec. II.# We do not give here a
detailed analysis of the problem. We just note that the b
equationsRmn50 determine not only ther evolution of the
metric @i.e., how terms in the expansion~4.2! are determined
by the asymptotic metrichi j (x)] but also give a constraint on
the asymptotic metrichi j (x). Indeed, the first term in the
series~4.2! cannot be arbitrary: the bulk equationsRmn50
dictate that it satisfy the equation

Ri j @h#5~d22!hi j . ~4.3!

Thus, the infinity of Ricci flat space should have the geo
etry of (d21)-dimensional de Sitter space which we w
loosely call a round sphere. It is an important difference fro
the anti–de Sitter case where the boundary metric can
arbitrary from a given conformal class. We may also co
sider the case when the boundary has the topology of a p
uct of n circles S1 ~the radius of each circle approaches
6-9
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constant value at infinity! and (d2n21)-dimensional sur-
face S. The parameterg5d2n21 in this case. The bulk
metric then is Ricci flat only if the surfaceS is
(d2n21)-dimensional de Sitter space.

The constraint~4.3! explains why for known example
our prescription~2.3! gives the same result as the Lau-Ma
prescription~1.3!. In these cases the boundary is chosen c
sistently with the form of the metric~4.2!; i.e., it is defined as
r5r 5const @the boundary metric isr 2hi j (x)]. From Eq.
~4.3! we get that the integral in Eq.~1.3! is proportional to
the area of the boundary in the same way as in the pres
tion ~2.3!.

B. When the boundary is not a round sphere

We saw above that the infinity of the Ricci flat space h
the geometry of sphereSd21. Therefore, it is a distinguishe
choice to take the boundary]Mr to be a round sphere. Thi
is what we were doing in most of the examples conside
above. However, we are of course free to choose the bo
ary to be any other closed surfaceS, topologically equiva-
lent to a sphere. An important question then is how much
regularization procedure is sensitive to this. In particular
was claimed in Sec. II that the coefficientc(g) in front of the
counterterm~2.3! is determined only by topology but no
geometry of the boundary. However, the analysis in Sec
was done for a boundary chosen consistently with the fo
of the bulk metric~2.5!, i.e., defined asx5const. In the
Ricci flat case, as we just have seen, it means that the bo
ary is a round sphere. So what happens if we take an a
trary surface as the boundary? Should the coefficient in fr
of the counterterm~2.3! depend on the geometry of the su
face? All these questions, in fact, challenge the universa
of our prescription. A related important question~partially
addressed in Sec. III! concerns the gravitational action of fla
space: does it universally vanish or may it take a nonzero
even infinite value depending on the shape of the bound

Analyzing this problem we consider the simplest possi
case when the manifoldMd is flat space with Cartesian co
ordinates$z1 ,z2 , . . . ,zd%. In this space we consider the s
quence of surfacesS r defined by equation5

z1
2

a1
2 1

z2
2

a2
2 1•••1

zd
2

ad
2 5r 2 ~4.4!

and parametrized by radiusr; when r goes to infinity the
regionMr inside the surface~4.4! covers the whole manifold
M. The parameters$ai% indicate how the surface~4.4! devi-
ates from the round sphereSd21 which is determined by Eq
~4.4! when allai51, i 51, . . . ,d. It should be noted that the
sequence of surfaces~4.4! is quite different from the sphe
roidal surfaces considered in Sec. III. The spheroidal s
faces still approach a round sphere when the radius goe
infinity while the surface~4.4! remains different from a
round sphere even at infiniter.

5I would like to thank Rob Myers for the suggestion to consid
this example and for many comments on the subject of this sec
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The Einstein-Hilbert action for the regionMr
d is given by

WEH52
1

16pGE
Sr

2K. ~4.5!

The trace of the extrinsic curvatureK of the surface~4.4! is

K5

S d221(
i

1

ai
2D

S (
i

zi
2

ai
4D 1/2 2

S (
i

zi
2

ai
6D

S (
i

zi
2

ai
4D 3/2. ~4.6!

For the integral of Eq.~4.6! over the surface~4.4! we get the
expression

E
Sr

KAg5~d21!r d22Sd21ad~ai !, ~4.7!

wheread(ai) is some function of the parameters$ai%. The
integration in Eq.~4.7! can be performed after introducing o
surface~4.4! an appropriate system of angle coordinates a
reduces to elliptic type integrals. Whend54 and only one
parametera15a in Eq. ~4.4! differs from 1 the integration
can be done explicitly and we get

a4~a!5
2

3 S a1
1

a11D .

It seems that in order to cancel the divergence~4.7! with help
of the counterterm~2.3! we need to assume that the coef
cient in front of the integral in Eq.~2.3! explicitly depends
on the parameters$ai%. This would indicate that our regular
ization prescription~2.3! is not universal and applies~as it
stands! only to a boundary which is a round sphere while
the more general case the prescription should be mod
appropriately to the concrete geometry of the boundary.

It is, however, instructive to analyze the behavior of t
EH action ~4.5!,~4.6! and the regularized action~2.2!,~2.3!
@with c(g)5d22 as it stands for a round sphere# with re-
spect to small deviations of the parameters$ai% from 1. For
simplicity, let us assume that only two parametersa1
5a,a25b are different from 1. Then up to second order
(a21) and (b21) we find that

ad~a,b!511
~d22!

d F ~a21!1~b21!

1
~d22!

d~d12!
„~a21!21~b21!2

…

1
~d22d28!

~d21!
~a21!~b21!G

1O„~a21!,~b21!…3 ~4.8!

for the functionad(ai) appearing in Eq.~4.7!. On the other
hand, we have

r
n.
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V5
ab

d
r dSd21 ~4.9!

for the volume ofMr
d and

A5r d21Sd21F11
~d21!

d
@~a21!21~b21!#

1
~d21!

2d~d12!
„~a21!21~b21!2

…12S d225

d21 D
3~a21!~b21!1O„~a21!,~b21!…3G ~4.10!

for the area of the surfaceS r . We are now in a position to
compute the regularized gravitational action~2.2!,~2.3!:

WEH1Wct52
1

16pG S E
S
2K2

2~d21!

dl*
AD .

We find that

WEH1Wct52
4~d221!

d2~d12! S ~a21!21~b21!2

2
2

~d21!
~a21!~b21! D r d22Sd21 .

~4.11!

We see that Eq.~4.11! is still divergent but it is now qua-
dratic in (a21) and (b21). So the counterterm~2.3! can-
cels the larger divergence of Eq.~4.5! in zero and first
orders in (a21) and (b21). Is it possible to find a counter
term which may cancel the divergence~4.11! in the second
order in (a21) and (b21)? The answer is yes. The require
counterterm is exactly the term~3.27! which we introduced
earlier in order to cancel the divergences for the sphero
boundary. Even the overall~dependent on dimensiond) co-
efficient in Eq.~3.27! takes the right form. In order to prov
the last statement we present here the result of the integra
of the invariant S[R i j

2 2@1/(d21)R 2 over the surface
~4.4!. In the second order in (a21) and (b21) it reads
n-

04401
al

on

E
Sr

S5
4~d23!2~d22!~d11!

d~d12!
r d25Sd21

3S ~a21!21~b21!22
2

~d21!
~a21!~b21! D .

~4.12!

We see that the divergence of Eq.~4.11! is exactly canceled
in second order by the counterterm~3.27! so that in the func-
tional

WEH1Wct1Wct15r d22Sd21 O„~a21!,~b21!…3

the divergence may appear only in the third and higher
ders in (a21) and (b21). In fact this is true in genera
when all parameters$ai% are different from 1. In this case
the expressions~4.11! and ~4.12! are proportional to the
same symmetric combination ( i(ai21)22@1/(d
21)#( iÞ j (ai21)(aj21) and the cancellation of the diver
gences is evident.

Presumably, this can be continued further: we should
troduce more~higher order in the boundary curvature! coun-
terterms in order to cancel the larger divergence in next
orders in (ai21). What we get then is an infinite series
the counterterms so that the larger divergence of the action
cancels in all orders in (ai21). This would mean that once
the gravitational action includes the whole infinite series
the counterterms it vanishes for flat space for any choice
the~topologically equivalent to sphere! boundary. We expec
that the structure of this infinite series is universal and de
mined only by the topology of the boundary. It would b
interesting to get more terms in this series and see if it c
verges to some compact expression of the boundary cu
ture.
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