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How to make the gravitational action on noncompact space finite

Sergey N. Solodukhin
Spinoza Institute, University of Utrecht, Leuvenlaan 4, 3584 CE Utrecht, The Netherlands
(Received 8 October 1999; published 20 July 2000

The recently proposed technique to regularize the divergences of the gravitational action on honcompact
space by adding boundary counterterms is studied. We propose a prescription for constructing boundary
counterterms which are polynomial in the boundary curvature. This prescription is efficient for both asymp-
totically anti—de Sitter and asymptotically flat spaces. Being mostly interested in the asymptotically flat case
we demonstrate how our procedure works for known examples of noncompact spaces: Eguchi-Hanson metric,
Kerr-Newman metric, Taub-NUT, Taub-bolt metrics, and others. Analyzing the regularization procedure when
the boundary is not a round sphere we observe that our counterterm helps to cancel theliaeggence of
the action in the zero and first orders in small deviations of the geometry of the boundary from that of the round
sphere. In order to cancel the divergence in the second order in deviations a new quadratic in boundary
curvature counterterm is introduced. We argue that the cancellation of the divergence for finite deviations
possibly requires an infinite series @figher order in the boundary curvatut@oundary counterterms.

PACS numbes): 04.60—m, 11.10.Gh, 97.60.Lf

I. INTRODUCTION is a functional of the curvature invariants of the induced
metric h;; on JM, . The role of this termwhich does not
affect the gravitational equations in the bulis to cancel
appropriately the large divergence appearing Wegy[ M, ].
The counterternW, [ h;; ] can be arranged as an expansion in
powers of the curvature of the boundary metric. The first few

1 i .
Wenlgl=— R( fMd(RJF 2A)+2LMdK>' (1.1  terms are the following6—8J:
2(d—2) I

The classical dynamics of gravitational figlehetricg,,,
on d-dimensional manifoldM%) is determined by the
Einstein-Hilbert(EH) action

1

where the boundary term proportional to the extrinsic curva- ch)tk:R e \/ﬁ{|— + d—3

ture K of the boundaryM should be added in order to make '

the variational procedure of the actiomhen only metric but 13 , (d=1)

not its normal derivative is fixed on the boundaryell de- + m( T mn ) - }
fined[1,2]. When the manifoldM is noncompact one consid-

ers a sequence of compact manifoMs with the boundary (1.2

dM, parametrized by the radiussuch thatvi,— M for large
r. The functional(1.1) on a noncompact manifol¥ then whereR;; andR are, respectively, the Ricci tensor and Ricci
should be understood as a result of the lifditzy[M, scalar of the boundary metric, ah@s the AdS radius related
—.M]. It is, however, a well-known problem that this limit- to the cosmological constant ds=(d—1)(d—2)/2% The
ing procedure iS not We” deﬁned Sin%H[Mr] diverges in terms(l.Z) are SuffiCient to Cancel divel’gences tbﬁ? On
the limit of larger. Therefore, the limiting procedure should the other hand, the leading divergence in ahis always
be accompanied by some regularization. The traditional wayemoved by the ternffirst introduced in Eq[9]) in Eq. (1.2
[3] of handling this problem is to subtract a contribution of Which is proportional to the area of the boundady should
some reference metricg, that matches suitably the be mentioned that introducing counterterms which are poly-
asymptotic and topological properties of the megicThe n_omlal in the boundary curvature one is able_to c_ancel all
choice of the metriq, is interpreted as fixing the vacuum divergences of the actiofi.1) but not the logarithmic one
state. However, such a reference metric does not always exigPpearing whend—1) is ever}. The later divergence can
which makes this subtraction procedure quite uncertain. b€ canceled by adding a counterterm which is not polyno-
It was rea"zed recenﬂy that When the SpMeS asymp_ mial in curvature. For example, fod=3 it is the term
totica”y AdS (rather than asymptotica”y ﬂ)ibne can take R InR that should be added. In hlgher dimensions there is
an alternative route. In the context of the AdS-conformal@mbiguity in choosing such terms. Up to this subtlety the
field theory(CFT) correspondence a general analyiased procedure of introducing the counterterfis?) is universal
on previous mathematical works,5]) of the divergences of and well defined.
the EH action for AdS space was dond &). Inspired by the
AdS-CFT correspondence, Balasubramanian and Kfaps
have proposed to add to the actidnl) a counterterm which  17ne extrinsic curvature of the asymptotic boundary of AdS space
is constantK =(d—1)/I. Therefore, the first term in Eq1.2) can
be presented as a surface integraKoford= 3 this was observed
*Email address: S.Solodukhin@phys.uu.nl in [10]
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Encouraged by this example one could try to construct aiize both the bulk and boundary UV divergences. In fact this
appropriate boundary term which cancels the leading diverstatement is quite obvious in the case of matter minimally
gence for asymptotically flat space. This term can be foungoupled to gravity. One just has to impose Dirichlet or Neu-
but it is not an analytic function of the boundary curvaturemann conditions on the quantum field on the boundavy.
(11,12 In the nonminimal case the boundary condition should be

chosen of a mixed type in order to make this statement valid.
o CLm Analyzing now this problem for the act.iqn/EHerct.with
We'=— e JR. (1.3)  the counterterm in the forr(l.3) or (1.4) it is hard to imag-
oMy ine how this structure can be preserved in the quantum case
since only terms analytic in the boundary curvature are
The constant, , depends on the topological type of bound- known to appear in the quantum effective actian least in
ary at larger. For the Schwarzschild like metribwhen its UV divergent paiton a manifold with a boundary.
boundary is topologically S;XSy_,) one has c y= Concluding our brief analysis we see that the nonanalytic
—2+(d—2)/(d—3). Not requiring the counterterm to be an boundary counterterms are likely not allowed in an unam-
analytic function of the curvature one can also construct &iguous and universal procedure of the regularization of the
term interpolating between expressiori$.2) and (1.3  gravitational action. The purpose of this paper is to propose

[12,13: another way of constructing the counterterms remaining in

the class of the functions which are analytic in curvature. In

wint 1 2(d-2) J, \/1+ 2 o me Zzysmptoticqlli/_ flalt ga;e,t r:Ne ar(ta nfotthgo(ijng to dgeneralifze
S . CERICED LA e prescription{1.2) in the part of the dependence o

the boundary counterterm on the boundary metric. Instead,
keeping the general structure of the counterterm as in Eq.
, (1.2, we define a scale parametér (analogous to the pa-
Indeed, for larger the boundary curvatur® vanishes and 5 neter| in the AdS caspwhich characterizes the global
we need to take the limit of smaR in Eq. (1.4) inorder to  yaqmetry of the spackn fact, it is the coordinate invariant
get Eq.(1.2). On the other hand, the asymptotically flat casegjizmeterof the spackand can be used in the constructing

is obtained by taking the limit of largein Eq. (1.4). The 0 oounterterms in the same fashion as in the AdS case. The
expressiorn(1.3) then is reproduced. We stress that this 'nter'prescription, thus, works universally both in asymptotically

polation exists only for the choice of the constapy in EQ.  ags and asymptotically flat cases and deals only with the
(1.3) as in the case of the Schwarzschild black hole. Thednalytic structure of the counterterms.

boundary then i$; X S;_,. For other types of the boundary
the expressioril.4) does not match Eq1.3) in the limit of Il. PROPOSAL
largel. .

There are, however, reasons to think that it is not an op- It should be noted that the counterterth2) is not an
tion to drop the analyticity in the proposed procedure ofoff-shell quantity. In fact, it contains some information about
introducing the boundary counterterms. The form of thethe asymptotic bulk geometry. Namely, the space-time is
counterterms then is not unique and, in fact, quite ambiguSuPPosed to be anti—de Sitter space with ratlid$ie role of
ous. Indeed, for asymptotically flat space, not oRfig but the parametel in AdS space is twofold. First, it measures
any function ®2)Y4 (R_z_kl)lm or even higher roots of the curvature of the bulk geometfRRicci scalarR=—d(d

ij/ ij 2 i ; -
higher power curvature invariants can be chosen as a candr- 1)/!I"]- Second, it measures the size of the spade:that
date for the counterterm. In the asymptotically AdS case wéluantity which relates the volume of AdS spad¢M;), and
also can take as a counterterm any functi¢ffR) that ap- ~ &'e@ of its boundary,,A_\(o"Mr),_ in ;he limit of Iarger,_l.e.,l
proaches(l+[|2/2(d—3)(d—2)]R) for small R. Among "‘V(Mr)/A(ﬁMr) This relation is the key 0nE15] in the

these functions, in particular, there are ones which do nofolographic correspondence between the gravitational theory
have the well-defined flat spack—¢ ) limit. in the bulk of AdS space and conformal field theory on the

Another reason why it is not desirable to use nonanalyti®@undary. As we said above, our idea is to introduce the

boundary counterterms appears from the consideration of tHR&rametet* which for asymptotically flat space plays a role
EH term in quantum theory. Any quantum field makes gSimilar to that_ of the parame_tdann the AdS case. Since it is
contribution to the EH action. In fact, this contribution is Uy N0t Possible in general to find any scale parameter univer-
divergent and we have to renormalize the Newton’s constarifely related to the curvature if the space is asymptotically
G (and cosmological term.) in order to handle these diver- at it is the holographic relation which we are going to
gences. The natural question is then whether the structure gpnerallz_e. Note _that In our prescription we do not require
the classical actioWg,+ W, is preserved under quantum the metric to satisty any equations of motion and in this
corrections and whether it remains the same after renormaf€"Se it is an off-shell prescription. We only demand (irat
ization. For the EH actiof(1.1), this question was addressed the case of ZEro cqsmologlcal anslane curvature of the
in [14]. It was found that the exact balance between the pulgPace-time die suff|C|ent.Iy fast with !argaso that the. bulk
and boundary parts in the quantum action is the same as {Rt€9ralfm, R converges in the largelimit. The only diver-
the classical actioil.1). Hence the renormalization of only gence of the gravitational actiaid.1) then comes from the
Newton’s constanfthe A term was dropped ifil4] but this ~ boundary term 2,y K. Note also that we will be mostly

does not affect the main conclusjois sufficient to regular-  considering the leading divergence of the action.

(1.9
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Consider the compact manifoll, with boundaryJdM,
parametrized by “radial” coordinate in an appropriate co-
ordinate system. Le¥(M,) be the invariant volume oM,
and A(dM,) be the area of the boundanM, . Define the
diameter I of the manifoldM, as follows:

V(M)
T A(M,)”

I*

(2.1

Consider now a sequence of compact manifolMs ap-
proaching the noncompact manifdidiin the limit of larger.

The diametel* then, in general, becomes a functionrof
Defying the gravitational actiokV,,[M] as the limit of the
actions Wy, [M,] for larger we want it to be finite as

—o0. The action we propose takes the form

Wgr[Mr]:WEH[Mr]'I'Wct[aMr]- (2.2

where, as in the AdS cag#.2), the boundary counterterm
1 c(y)
Wct[ﬁMr]——mTLMr\/ﬁ 2.3

is proportional to the area of the boundary.

PHYSICAL REVIEW D 62 044016

The area of the boundayM, and the volume oM, are
given by

A(aM,)zA(r)zf Vh(x,r)d?"1x,

V(M) =V(r) = J ‘A0 dy. 2.6

Assume that for large the area functiom\(r) is represented
by the series

A(r)=Agr "+ Ar " 14+Br* tnr+. . -, 2.7
whereAy,A,B are some coefficients and the ellipsis stands

for the subleading terms. Then for the volumewbf we have
that

Ao Aq
V(r)= r7+1+(——
( y+1 y 7

B
r’+ ;Inr+-~. (2.8

The parametery>0 is the coordinate invariant; it shows
how the area oM, (or volume ofM,) grows for larger.
The radiud* defined by the relatiof2.1) then reads

First, we want to demonstrate that by adding the counter-

term(2.3) we do not change the Einstein equations following [* — r n 1 Aj _ i E)

from the EH action. We fix finite and consider small varia- y+1 \y(y+1) Ay ¥? A

tions of the metric in the bulk assuming the induced metric

on the boundaryM, is fixed. The diametef2.1) changes + 1 Elnr+ . 2.9
under variation of the metric in the bulk. At first sight it y(y+1) Ao

seems that this may result in rather complicated equations

when the action(2.2) is varied. However, it is quite surpris- For the extrinsic curvature of the boundary we hdyg K

ing that the presence of the extra tefth3d) has the same

=9d,A(r), so that the leading divergence of the EH action for

effect in the field equations as that of the effective cosmodarger is proportional tor”~ 1. Assuming that the bulk part

logical termA ¢i= —c(y)/2(1*)%:

1 1
W= 157 ], 29" R 300 e 0]
(2.9

So for the boundary placed at finitehe extra boundary term

(2.3) shows up in the gravitational equations in the form of

of Eq. (2.2) converges for large [this restricts the metric
hij(r,x) to grow asymptotically not faster thart] we find
that the boundary part of E@2.2) is given by

c(y)
I*(r)

boundary__ _
Wer =

167G 29,A(r)+

A(r)|.
(2.10

the finite cosmological term o;. Considering the sequence Taking now the limit of infiniter we find that the leading

of boundaries parametrized by increasingve find a se-

divergence of the gravitational action cancels provided we

quence of bulk metrics described by Einstein equations witt¢hoose the constae(y) to be

decreasingsincel* is growing asr for asymptotically flat
space cosmological constant. In the limit of infinite the

guantity A .¢; disappears and the gravitational equations re-

main unaffected.

In order to show that the gravitational acti¢h?2), (2.3) is
indeed less divergent than Ed..1) and determine the coef-
ficient c(y) let us consider orM¢ the coordinate system
(x,x,i=1,...d—1) where the metric looks as

ds?=dx?+h;; (x,x)dx'dx. (2.5

__ 2.1
c(y)=— pang (2.1
so that the regularized action
W =—r7‘ZEB+O(r7‘3) (2.12
987G y '

is finite if y<2. In some cases the logarithmic term in the
expansion2.7) is absent. Then the leading term in the action

The compact manifold/, is determined by the range of the (2.12 is of the order ?~3. Thus, the adding the counterterm

radial coordinate, & y<r. The boundarygdM, stays aty
=r andh;;(r,x) is the metric induced on the boundary.

(2.3) guarantees the cancellation of the leading divergence.
In order to remove the divergences still present in the action

044016-3



SERGEY N. SOLODUKHIN PHYSICAL REVIEW D62 044016

one has to introduce extra counterterms such as thelterm =—V\/§,. It happens that—namely, fof —our regularization

JowR or (1I*)3f ,yR 2. We consider such terms in Secs. Ill procedure gives the same result as the standard subtraction

and V. method. In all examples we present below the corresponding
In order to determind* we have to have information regularized action is a non-negative quantity. As a simple

about the whole manifoldl. However, for the cancellation illustration of our regularization procedure consider the

of the divergences in the gravitational action only the=4 Schwarzschild metric

asymptotic behavior off* is important. Therefore, it would do? 5

be desirable to define another quantifyas the asymptotic _ 2, 9P 5 _,_<cm

value of |* for larger. It can be usgc(instead ofl*) in ds’=g(p)dr*+ ( )+p d%' 9(p)=1 ’

constructing the boundary countertefthd). The advantage (2.149

of usingl is that the counterterit2.3) then depends only on

the asymptotic properties of the bulk metric and is not sen

sitive to what happens inside the manifold. The quarijtis

not, however, uniquely defined since it depends on ho

many termgas in Eq.(2.9] we want to keep in the large

expansion of*. On the other hand, the freedom in choosing

Fhe coordln_ate_s in the asym_p_t(_)tlc metf&x5) also may result AN =2mBuS,(r2—mr—2mrinr+---) (2.19

in an ambiguity in the definition of} . In all cases these

ambiguities affect only the subleading termdjnand, even- for larger. In Eq. (2.15 we recognize the expansid@.7)

tually, in the gravitational action. Note in this context that with y=2. The diametet* defined above and its leading

picking up the first three terms in the expansi@9 and asymptotic values are

using this in the counterterrf2.3) we get exactly the same

where Os7<2mBy, By=4m. It takes the form2.5 after
performing the coordinate transformatign= [?dp/\g(p).
Asymptotically, we havey=p—mInp. The compact space
V\f\/lr is defined as & y=<r. The area of the boundayM,
behaves as

result(2.12) for the the leading part of the gravitational ac- |+ _r Tln - moo
tion as whenl* is used. Of course, we can add more sub- 3 3 3 ’
leading terms not changing this conclusion.
We still need to find an unambiguous and coordinate in- s . m
variant notion of the asymptotic value bf. In order to get la 3 §|n r. (2.19

an idea of such a notion consider the largé.e., valid out-

side of some compact, large enough region of maniMdld  Respectively, we have, for the regularized acti@ri?) and
expansion of the diametéf done in any appropriate coor- (2.13),

dinate system. The-dependent terms in this expansion—for ) )

instance, the functionr,Inr,1,1f,1k?2, .. .}—can be con- W= — 4mm WA _4mm (2.17)
sidered as forming a basis in functional space and the large g G’ o G '
expansion ofl* is just a decomposition of* along this

basis. Among the elements constituting the basis there at@ Wg, we recognize the standard expression for the action of
ones which grow infinitely withr. In the above example only the Schwarzschild metri2,18,12.

the functionsr and Inr are such elements. Then, the projec- The parametey in Egs.(2.7)—(2.9) is an important char-
tion of I* onto the subspace spanned by the asymptoticallcteristics of the asymptotic geometry of the manifid.
growing elements is what we will call the leading asymptoticDemanding the bulk metric to approach asymptotically the

valuel? . For the expansiof2.9) we have (locally) flat metric, y is restricted by topology of the
asymptotic boundaryM. In the simplest case, when the size
LT 1 B of aM¢9 grows equally in all directionffor example, ifoM¢
13 ImJF Y+ 1) A_oln r. is a (d—1)-sphere and the asymptotic metric b is ds?

=dr2+r2ds§dil], we havey=d—1. However,y can be

Note that by definition the constant term is not included inless than §—1) if, for example, asymptotic metric ids?
I% . The quantityls appears to be unambiguous and coordi—zE{‘:ld;-z+dr2+rzdsédinil, where each coordinatg is

nate invariant. . . compact. Theny=d—n—1. It seems to follow from these
The_gra’\cntatlonal action regularized by the countertermMexamples thaty is related to the dimension of the spheric
(2.3 with I then reads component in the boundasM . In d=4 the locally flat met-

ric may take the formds®=dr?+r?(d6?+ sirfede?) +(dr
+2ncosid¢)?. The surface of constantis then the Hopf
fiber bundleS;— S, with fiber S;. Locally it looks as a direct
productS; X S,. However, the appropriate identificatiofia

For y=2 it takes the finite value which is different from Eq. 7 and ¢) and overlapping coordinate patches give the sur-
(2.12. In many examples of four-dimensional metrics we face of constant the topology ofS;. In this casey=2 is the
consider below, the parameteBsand A; are related a8  same as for the boundaB; X S,.

=2A,. Then the limit of large in the expression®.12) and In the asymptotically AdS case, the expansiary) is not
(2.13 for y=2 gives rise to results opposite in sighj;,  valid since the area

1
_ _ -2 -3
W =55 (A= B)r" 2+0(r" %), (2.13
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A(r)=eld=Drd=1a 11+ 0(e "] stands on equal ground with any other space-times and it is
not meaningless to ask what is the gravitational action for the
grows exponentially wittr. As a result, the quantity* as-  flat space-time itself. Choose a metric on flat sp&eto

ymptotically takes the constant value take the standard formspe=dx?+ x*dss __ and determine
| the compact spacb’lﬁj as O<y<r. The spacel\/lﬁj has vol-
I*=m+0(e*”'). (2.18  ume V(r)=(r%d)S4_, and its boundaryyM? is a round

sphereSy_; with areaA(r)=r"13,_; (we denoteS , to be

. . _ 2 .
Therefore, the notion of the leading asymptotic valfiele- ~ aréa of am-dimensional sphere; s=27°), so that the di-
: : : meter (2.1) of MY is I*=r/d. We have y=d—1 and
fined above is not good for asymptotically AdS spaces. Irft r p Ve y=4a )
this case, we have to define it as the first, constant, term if(¥)=—2(d—1)/d for M;. Substituting these ingredients
the larger expansion, so that we havg=1/(d—1). Using INto formula(2.10 we find that the regularized gravitational
this quantity in the counterteri2.3) we reproduce correctly 2action(2.2) indeed vanishes for flat space.

the first term in the AdS expressih.2) provided the value [N our analysis we are not restricted to consider only so-
y=d—2 is used to define the constacfy), Eq. (2.1).  lutions of the Einstein equations and are interested in any

Note that in both the asymptotically AdS and asymptoticallymetric for which the bulk integrafy R converges for large
flat cases our prescription fof is to take the leading partin r. An example of an asymptotically Euclidean metric with

the larger expansion fo* . vanishing Ricci scalaR is the wormhole metri¢16]

It is interesting to note that using the quantity in Eq. 5\
(1.2) we are able to cancel all divergences of the action in- ds?=| 1+ a ) (dp?+ 2d§83) (3.2
cluding the logarithmic one. In the AdS case the size of the W p-re ' '

asymptotic boundary always grows in equal proportion in all

directions when the boundary approaches infinity, so that wheredsﬁ3 is the metric of a standard three-sphere. Obvi-
should depend only on dimensiehand be the same for all ously, the condition(3.1) is satisfied for(3.2). In fact, the
possible metrics on the boundary. Note that it is kind ofmetric (3.2) describes space with two asymptotically Euclid-
mystery thaty in the AdS case should be the same as in thesan regions ap— andp—0 with a minimal three-sphere
asymptotically flat case with on&; component in the |ocated ajp=a/2. One can bring the metri8.2) to the form
boundary(i.e., as in the Schwarzschild black hole dadéis  (2.5) by introducing the radial coordinatg=p—a?/4p.
becomes even more surprising when we recall that for AdShen Eq.(3.2) read$

space both the bulk and boundary parts in the EH action

diverge while for the asymptotically flat space only the d?=dy?+ (x?+a?)ds3 . (3.3
boundary part causes the divergence. The same is also true 3

for the Lau-Mann prescription with the counterterth.3)  gince the manifold has two asymptotic regiofat large
where the coefficien,y (for boundary being product of & negative and positive values qf), we define the compact
sphere_andS, factor should in general bec.y=  manifoldM, in a symmetric way as-r<y=tr. The bound-
—2yyl/(y—1). Only for y=d—2 (the boundary isS;  ary gM, then has two components gt=—r and y=+r,

X S4-,) does there exist a correspondence betweerE8.  respectively. The manifolt¥ then is approached in the sym-
and the AdS prescriptiofiL.4). There must be deep reasons metric limit whenr — . The areaA(r) of the boundaryM,

for the coincidence of's in these two cases. is A(r)=2(r>+a?)%?%s ;. The integral of the extrinsic curva-
ture readsf ; K=d,A(r)=6r(r>+a”)?%; and the EH ac-
ll. EXAMPLES tion Wey=—(3/47G)r(r2+a?)¥%, diverges asr? for
A. Asymptotically (globally or locally) Euclidean spaces larger. Calculating thediameter F, Eq. (2.1), of the mani-

fold M fi
The asymptotically(globally) Euclidean space is defined old M, we find

[16] to be one admitting a charfx“} such that for r 3a2 1
(x,x*) 2= p>p, the metric can be written as I¥ =z+tg7 O r_3)' (3.9
a?\? 1
9ur=| 1+ /? 8,,+0 ?) (3. In this casey=3 andc(y)=—3. It seems that our regular-

ization procedure applied to the metiid.3), according to

It is known that the only asymptotically globally Euclidean E9- (2:12. should lead to the action which grows linear with

solution of the Einstein equations is flat space. Usually flaf: However,. for the me_tr|¢3.3) the coefﬂmentsA_l andB in
space-time is considered as a reference metric with respecthef expan§|or(2.7) vanish. Therefore, calcqla}tmg the regu-
which one determines the contribution of a curved metric t arized action(2.2), (2.3, (2.10 we get the finite value

the action. In this way, one automaticallyy definition as-

signs zero gravitational action to the flat space. It is then a

part of the positive action theorem that in the class of asymp- ?Being extended to higher dimensidrthe metric(3.3) has scalar
totically Euclidean metrics the gravitational action is zerocurvatureR=(d—1)(d—4)a%(x*+a?? and the integrafy R di-
only if the metric is flat. In our method, however, flat spaceverges as® * for larger.
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3ra2 B. Asymptotically flat spaces
e 39

Wer=~ In the class of asymptotically flat metrics we include all
metrics describing space-time with the boundary at infinity
being anS; bundle over anS,_,, where theS; fiber ap-
proaches a constant length. So the growth of the area of the

boundary for large is due to the spheric compone8j_»

when we take the limit of infinite. The leading asymptotic
value for Eq.(3.4) is I =r/4. Using this quantity in the
boundary counterterm we find

) and we havey=d—2 for all spaces of this class. Fdr=4
a :377a _ such bundles are labeled by the first Chern number. If it
9 4G vanishes, the boundary has the topology of the direct product

S, X Sy_,. Otherwise, its topology is more complicated. The

If outside of a compact region the metric approaches th%oundary then is a squashed sphere. The flBein the

standard flaR® metric with boundang,_; identified under
some discrete subgroup $0(d) with a free action org;_ 1,

such metric is asymptotically locally Euclidean. Note that for

bundle is usually due to compactified Euclidean time.

1. Schwarzschild metric ird dimensions

both the locally and globally Euclidean metrics the param-

etery in the larger expansiong2.7), (2.8) takes its maximal
possible valuey=d—1. An example of adl=4 asymptoti-

cally locally Euclidean solution of the Einstein equations is

the Eguchi-Hanson metrid 6,17
1 a4>1d 2 (1 a4>
—_— + [ —
o4 p p?

2
x%(d¢+cosed¢)2+

ds’=

pz
Z(d02+sin20d¢2),
(3.6)

where in order to remove the apparent singularityp ata
one should identifyy modulo 2 rather than modulo # as
is usual for Euler angles dB;. This identification makes the
surface of constanp>a into projective spac®P?, i.e., a
three-sphere with antipodal points identified. The surface
=a is a two-sphere. Defyin§l, as O<p=<r we find

4

ré at|
V(r)=3—2 1—r—4 33,

r3 a4 1/2
A(r)=§<1—r—4) 33, (3.7

whereZ ;= [ sin éddd¢dy. From Eqgs.(3.7) the diameted ™
is found to be

4\ 1/2

a
I.4

The vector normal todM, has the componentén'=(1
—a*r*)12.0,0,0 and we have that
1
O| |-

r

a4

———=+
8r?

j K=nr(9rA(r)=§r2

r

Thus, the EH action for the metri8.6) diverges as?. Cal-
culating the regularized actioi2.10 (in this casey=3) we
find that the counterterrt2.3) precisely compensates thé
divergence while the rest of the terms vanisis a*/r?) in
the limit of larger. Thus, the metriq3.6) has vanishing
gravitational actionWy,=0. One obtains the same result if
the asymptotic quantity; is used in the counterterm.

A generalization of the four-dimensional metfiz.14) to
higher dimensions is the metric

B A
9(P)-1—<;) ,
(3.8

_ 2
ds?=g(p)dr*+ 90p)

+p2d5§d72,

where 0= <278y, Bu=2u/(d—3). Though the analysis
can be done in terms of a metric of the ty(@e5), the calcu-
lation is simpler for a metric of the forr(8.8). In this coor-
dinate system we define the compact manifeld as u<p
<r. The area oPM, and volume ofM, are

A(r)=2mBpS4-or 4 2g¥r),

1
V(D =2mBuSq o g7 (1" 2= p® ™),

(3.9

For larger the areaA(r) grows asr® 2 so that y=d—2.

The diametet* of M, is
L d-1
; :

In the coordinate syster(8.8) the integral of the extrinsic
curvature of the boundary is given by the formqlngK

=n"4,A(r), wheren"=g"¥(r) is the nonzero component of
vector normal todM, . For finite r the regularized action

r

I*(r):d_

-1/2 _
—79 YNt

(3.10

(2.2) reads
BrZa- .
W= ——ge—| (d=3)u?
S 2(d-2) ., g(n) )
re 1—(uir)d 1)

In the limit of larger it goes to the finite value

3Sincey=d— 2, it seems that the regularized acti@12 should
diverge asr” 2. However, it happens that for the met(.8) the
only nonzero(growing withr) terms in the expansiof?2.7) for the
area arg ”~2 andr. Therefore, the action is indeed finite.
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(d—3)ud3 The area of the boundagM, is
Wqr=— B—BHEd 2- (3.1
A(r)=327*n(r2—n?)f¥qr). (3.17
The asymptotic value of the diameté8.10 is 15 =r/(d The diameter oM, then is
—1). It can be used in constructing the boundary counter-

term (2.3). The corresponding regularized action r-n_r n n2 ,
,BHEdz (r+2n) T3 §—Z—+O(1/r)
Wg,=— {(d=3)u
for Taub-NUT space and
_oypd-3 _ 412
+2(d=2)r* Fg(n)—g"An)1} T,
—+0(1/r?)

exactly coincides with the one obtained within the standard B3 120 327
subtraction procedureW=—(1/87-rG)fﬁMr(K—K0) pro-
vided the reference metric is the metric of flat space wit
Ko=(d—2)/r. For larger we obtain

hfor Taub-bolt space. In both cases the leading asymptotic
value isl; =r/3. Calculating the regularized gravitational ac-

tion one obtams
/—Ld73
WS =—— B3 4_5. 3.1 47n?
gr 8G BH d-2 ( 2) Wgr:_wgr:T (31&

2. Taub-NUT and Taub-bolt metrics

For d=4 the boundary at infinity, which is the fiber
bundle ofS; overS,, may be nontrivial if the corresponding S7n

for the Taub-NUT metric and

2

a __ —
Chern number is nonzero. It is the case for the Taub- Wor=—Wer=—7g (319
Newman-Unti-TamburindTaub-NUT) and Taub-bolt met-
rics which can be present in the forfh7] for the Taub-bolt metric. The expressions wg, agree with
02 the results obtained ifl2] within the square root prescrip-
_ 2 02 tion (1.3) and with the calculation performed 8] using the
ds?=f(p)(dr+2ncosfdd)*+ f(p) +(p )dséz AdS prescription. In the later case the expressi@ik8 and
(3.13 (3.19 are recovered in the limit of infinite AdS radilisThe
) o difference between Eq$3.19 and(3.18 vyields the results
where the metric function is of [18,19. On the other hand, Eq&3.19), (3.19 agree with
the much older result by Gibbons and P€r20]| obtained by
(p)_j (3.14  an “imperfect match” of the Taub-NUT(Newman-Unti-
ptn Tamburing solution to Euclidean flat space.
for the Taub-NUT metric and 3. Kerr-Newman metric
(p—n/2)(p—2n) The Euclidean Kerr-Newman metric parametrized by
f(p)= =% (3.19  massm, electric charge, and the rotation parametartakes
P the form

for the Taub-bolt metric. The Euclidean timen Eq. (3.13
should be identified with period 8n while the angleg is
identified as modulo 2. In fact one should take two differ- 2
ent coordinate patches which are nonsingular at the north grr:p_, 9o=p2  G..=p (A+a%sirte),
pole (#=0) and south poled= 7), respectively. The over- A ”

lapping of these patches gives a surface of congianp .

ds’=g,,dr?+g,,d6°+g,,d7*+2g,,dtdp+g 4,d 7,

(p+=n for Taub-NUT andp, =2n for Taub-bol}, the to- U,p=p 2SiPO(r?—a?—A), gue=p *[(r?—a?)?
Z(r)]g)lgg of three-spherdwith (7/(2n),0,¢) being Euler + Aa%sir26]sirPe,

The manifoldM, in the sequence of spaces approaching
the spaceM is defined by the range, <p=<r of the radial
coordinate. The square root of determinant of mei8id 3,
Jg=(r2—n?)sing, does not depend on the metric function This metric has vanishing scalar curvature although the Ricci
f(r). Therefore for both Eq¢3.14 and(3.15 the volume of  tensor vanishes only ifj=0. The Euclidean metri¢3.20
the spaceM, is can be obtained from the Lorentzian metric by taking the

3 3 Wick rotation of time and supplementing this by the param-
(r__ P_+) (1 —p.) (3.16 eter transformatiom—1a, gq—1q. The Euclidean instanton

3 3 P+ ' (3.20 is a regular manifold forr=r,, wherer,=m

A(ry=r?—a?—qg?-2mr, p2=r?—a%cog. (3.20

V(r)=327n
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+ym“+a“+q- is the positive root of the equatioa(r)

=0, provided one makes certain identifications. The angle dSZZA(r)

coordinateg should be identified modulo2 We must also
identify points (r,¢) with (7+278y,¢+27Q08,), where

2 2
(re—af) Q a
e __2_
/—m2+a2+q2 r+—a2

For the metrio(3.20 one has that/g= p?sin 6. The bound-
ary of the manifoldM, we define by the equation=const.
We then find, for the volume and area,

V(r)

8
3Bl -ri-a¥r-r.)l,

A(r)=4m2B,AY2(r)I(r), (3.21)

wherel (r)=f1,dx\r?—a?x2. From Eqgs.(3.21) we find

m2

2

9° 1 )
E— F‘l‘O(l/r )

[*(r)= L + m +( —2
3 3 9
for the diameter oM, . The asymptotic value i =r/3.

The vector normal to the bounda®M, has the compo-
nentn"=(A/p?)? so the extrinsic curvature of the bound-
ary K=V ,n*=(1/\/g)4,(/gn"). For the metrich;; induced
on dM, we have Vh=\g(A/p?)*? and hence, K\h
=[rA(r)/p?]sing+3A’sing. Performing the integration
over angled and taking into account thatd ¢pdr= 4728y
we obtain

A(r)
a

In

r

f Kyh=47?p,
M,

A
+A'(r)].
-a (r)
Calculating now the regularized action we get

W2 = =Wy, = mmpy. (3.22

This reproduces previous resu[t3,18] obtained within the
subtraction regularization procedure.

4. Flat space in spheroidal coordinates

PHYSICAL REVIEW D62 044016

2
p—dr2+pzd«92+ A(r)sirfod¢?+ r2c0326ds§d_3,

(3.23

whereA(r)=r2—a?, p?>=r2—a?cog6. The metric(3.23 is
obtained as ther=const part of the ¢+ 1)-dimensional
metric[21] generalizing the Kerr metric by setting the mass
to zero. It is regular ifr=a. For Eq.(3.23 we have\g
=p?r9=3singcos30. We define the surfacéM, by the
equatioft r=const. Further calculations go along the same
lines as for the Kerr-Newman metric. We have for the vol-
ume and area, respectively,

_4772(173 d a2
G2 (l‘r—z)’
B rd-1 d—1) a?
A(r)—4w2d,3(d_2) 1—( d r—f
a.4
—mr—zﬁrO(aG/re)}. (324)

The larger expansion for the diametéf is
d?-2) a*
( ) r—+O(a5/r6)).

(3.29

Hence, its asymptotic value i§ =r/d as it should be for
y=d—1. For the extrinsic curvature @M, we haveKh
=n'4,(y/gn"), wheren'=(A/p?)¥? is a component of the
normal vector. After performing the integration over ¢,
and 6 we get

f Kvh=473 4 ,rd2
M,

d—1 (d-1) a?
d-2 d r?
2 at
— mr—4+0(a6/r6) .

Computing in the leading order the regularized action

In all examples considered so far the sequence of bound-

ariesdM, was chosen in a natural way for a given metric on
manifold M. However, there of course exists freedom to

choose different shapes for the boundatibk, . The impor-

tant question arises as to how the limiting value of the regu-

larized actionWy[M,—M] depends on the limiting se-

guence of the boundaries chosen. To address this question

we consider flad-dimensional space. In Sec. lll A we dem-
onstrated that choosingM, to be a round d—1)-sphere of
radiusr the limiting value of the gravitational action is just

4.3 (d—1)
2G d(d—2)

Wa —

= a’rd 41+ 0(a%r?)],

S4-3 (d+1) ~
g,=2d—G362ma4rd f[1+0(a%r?)],

(3.2

zero. In this section we want to recalculate the action for flat 4The surface of constamtis a spheroidal surface with curvature

space, choosing the set of boundard®é, to be now a se-

depending on the anglé. For d=3 we have, in particularRk

quence of spheroidal surfaces. We choose the spheroidal ce-2r?/(r?—a? cog 6)>. Note that the in the limit of infinite' the

ordinates on flat space where the metric reads

surface tends to a round sphere.
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we find that the result is different fow,, and Wg,. The  needs to find the manifold of negative constant curvature
action Wy, is less singular: the leading termri§©. Let us ~ which has a given conformal structure at infinitAn exis-
concentrate on analysis of the regularized actidgy. We  tence theorem for such an Einstein metric was provdé&jn
observe that fod<5 the limiting value of the action is zero. One can explicitly obtain an asymptotic expansion of bulk
This is in agreement with our computation done in Sec. Il Ametric near infinity starting from any metric at infinif].

for the boundary being a round sphere. Ber6 the larger Technically, one uses the distinguished coordinate system
behavior of the action is dominated by the constant term anf#] where the bulk metric takes the form

the limiting value is finite. Fod=7 the gravitational action 12402

d|verg¢s as? 6. These observations are §|m|Iar to the ones d32=—l;+ —[hi-(x)+h-(»1)(x)p

made in[13]. We see that fod=6 the limiting value of the 4p  p- Y .

action appears to depend on the choice of the limiting se-
guence of boundaries. A possible resolution of this problem

is to find a new counterterm which may remove the Ieading,vherep is a radial coordinate, and=0 determines the in-
term in Eq5(326) It is not difficult to find the appropriate flnlty of space. Once one piCkS the first teh,rp(x) the Ein-

counterterm among terms quadzratic in the bouznqlary CUNV&stein equations determine the other terms inghexpansion,

ture. Indeed, the invarian=Rj—[1/(d—1)]R* identi- h{P(x),h{P(x), . .., aslocal covariant functions of the met-
cally vanishes for the rgundj61)-d|men§|ongl spherén ;¢ hij(x). That is why the divergence@lue to the integra-
this caseR;; =[(d—2)/r"]y;). Moreover, its first variation o, iy the action over smap) of the EH action are com-

8S due to a small deviation of the metric from that of the letely determined by the asymptotic metrt;(x) and
round sphere also identically vanishes. Therefore, the ge‘g'xpressed as local covariant functionshgf(x). Tﬁe idea of
metric invariantS is nonzero only in second order with re-

. X introducing the counterterms determined on the regularized
spect to the deformation of the metric of the round sphere

; ) . (staying at p=¢€) boundary [with boundary metric
The spheroidal surface is as-dependent deformation of the (1/eh;;(x)] then appears quite naturafly].

round sphere and we can expect that in the leading order To what extent can the same be done in the asymptoti-

. B . . 4 .
(smallaor larger) the invarianiSis prop_ortlonal ta .'Th's cally flat case? The Einstein equations then determine the
is exactly what we need for cancellation of the dlvergencemetric with vanishing Ricci tensor. In analogy with the

. 4 . .
Eﬁzth) allso proportrl]onal ta”. A detail computation shows anti—de Sitter case we can fix the metnig(x) at infinity of
atfor larger we have the space and try to determine the metric in the bulk by

(d—3)2 solving the equatiorR,,,=0. In particular, we can use the
S= [(d—2)cog 6)*—2cog )2 coordinate systemp(x) where the metric takes a form simi-
(d=1) lar to Eq.(4.1):

4
+(d—2)]r—8+O

6
1
ﬁ)). d82=dp2+p2( hij(x)+h§jl>(x);

Integrating this expression over angles we find that the
boundary integral

(2) 1 idx
+hj (x);2+~~ dx'dx; 4.2

the boundary area for the metii.2) grows asp®~* so that
the metric is characterized by the valye=d—1 of the pa-
(327 rametery introduced in Sec. Il. We do not give here a
edetailed analysis of the problem. We just note that the bulk
equationsR ,,=0 determine not only thg evolution of the

Some similarity of the counterteri8.27) and the quadratic metric[i.e., how terms in the expansidA.2) are determined

in the boundary curvature counterterm in the AdS prescrip-by the asympfcotic mgtribij(x)] but also givg a constrqint on
tion (1.2) should be noted. the asymptotic metrid;;(x). Indeed, the first term in the

series(4.2) cannot be arbitrary: the bulk equatioRs,, =0
dictate that it satisfy the equation

1 d3(d-1 1
Weu = Y <I*>3f (Rﬁ-——RZ
M, -

the infinity of space is at the infinite value pf [Note that
167G (d—3)%(d—2) d—1 )

is that additional counterterm which can be added to th
gravitational action in order to cancel the diverge8e6).

IV. MORE OF THE BOUNDARY GEOMETRY
A. Asymptotic geometry of Ricci flat space Rij[h]=(d=2)h;;. (4.3
The universality of the AdS prescriptiofl.2) valid for ~ Thus, the infinity of Ricci flat space should have the geom-
any metrich;;(x) on the asymptotic boundary of AdS space etry of (d—1)-dimensional de Sitter space which we will
is based on the possibility to well pose the Dirichlet bound-loosely call a round sphere. It is an important difference from
ary problem for the Einstein equations with positive cosmo-+the anti—de Sitter case where the boundary metric can be
logical constant. Indeed, the solution of the Einstein equaarbitrary from a given conformal class. We may also con-
tions is completely determined once one fixes the inducedider the case when the boundary has the topology of a prod-
metric on the boundary of the spaémore precisely, one uct of n circles S; (the radius of each circle approaches a
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constant value at infinifyand (d—n—1)-dimensional sur- The Einstein-Hilbert action for the regidv? is given by

face 3. The parametey=d—n—1 in this case. The bulk

metric then is Ricci flat only if the surface is 1

(d—n—1)-dimensional de Sitter space. Wen=— RL 2K. (4.5
The constraint(4.3) explains why for known examples '

our prescriptior(2.3) gives the same result as the Lau-Mannr,q 1ace of the extrinsic curvatukeof the surface4.4) is

prescription(1.3). In these cases the boundary is chosen con-

sistently with the form of the metri@gt.2); i.e., it is defined as 1

p=r=const[the boundary metric iszhij(x)]. From Eq. (d—2+2 _2>

(4.3 we get that the integral in Eq1.3) is proportional to K= 8

the area of the boundary in the same way as in the prescrip-

AN 2\ 32
tion (2.3). (E Z—I4) (E 2_,4)

i a‘i i ai

T A

(4.9

B. When the boundary is not a round sphere For the integral of Eq(4.6) over the surfacé4.4) we get the

We saw above that the infinity of the Ricci flat space hasexpression
the geometry of spher® 1. Therefore, it is a distinguished
choice to take the bounda to be a round sphere. This
is what we were doing in %?g;t of the exampltfs considered fer\/§=(d—1)rd Y4 1a4(8y), 4.7
above. However, we are of course free to choose the bound-
ary to be any other closed surfae topologically equiva-  \yhere o (a;) is some function of the parametefia;}. The
lent to a sphere. An important question then is how much oUfytegration in Eq(4.7) can be performed after introducing on
regularization procedure is sensitive to this. In particular, 'tsurface(4.4) an appropriate system of angle coordinates and

was claimed in Sec. Il that the coefficies(ty) in frontofthe  oquces to elliptic type integrals. Wheh=4 and only one
counterterm(2.3) is determined only by topology but not narameterm,=a in Eq. (4.4) differs from 1 the integration
geometry of the boundary. However, the analysis in Sec. Ikgn pe done explicitly and we get

was done for a boundary chosen consistently with the form

of the bulk metric(2.5), i.e., defined asy=const. In the 2
Ricci flat case, as we just have seen, it means that the bound- ay(a)= 3
ary is a round sphere. So what happens if we take an arbi-

trary surface as the boundary? Should the coefficient in front . . .
of the counterterni2.3 depend on the geometry of the sur- |t S6€mS thatin order to cancel the diverge(%) with help
face? All these questions, in fact, challenge the universalit)?,f the_ counterternﬂ(Z._S) we need to assume t.hat the coeffi-
of our prescription. A related important questigpartially cient in front of the integral in Eq(2.3) explicitly depends

addressed in Sec. Jitoncerns the gravitational action of flat On the parameters, }. This would indicate that our regular-

space: does it universally vanish or may it take a nonzero ofZation prescription2.3) is not universal and applie@s it
ands only to a boundary which is a round sphere while in

even infinite value depending on the shape of the boundary"‘?I = o
Analyzing this problem we consider the simplest possiblethe more general case the prescription should be modified

case when the manifolt? is flat space with Cartesian co- apprqpriately to th_e concrete geometry of the boundary.
ordinates(z, ,z, z4). In this space we consider the se- It is, however, instructive to analyze the behavior of the

s ; EH action (4.5),(4.6) and the regularized actiof2.2),(2.3
quence of surfaceX; defined by equatioh [with ¢(y)=d—2 as it stands for a round sphéngith re-

Zi zg 2(2j , spect to small deviations of the parametgag from 1. For

22Tt (4.4  simplicity, let us assume that only two parameters
o= d =a,a,=b are different from 1. Then up to second order in

(a—1) and p—1) we find that

+1
aa+1

and parametrized by radius whenr goes to infinity the
regionM, inside the surfacé4.4) covers the whole manifold (d-2)
M. The parameterga;} indicate how the surfacét.4) devi- ag(a,b)=1+

ates from the round sphe8¢~* which is determined by Eq. d
(4.4 when alla;=1,i=1, ... d. It should be noted that the

(a—1)+(b—1)

sequence of surfacdd.4) is quite different from the sphe- + M((a_1)2+(b_1)2)
roidal surfaces considered in Sec. Ill. The spheroidal sur- d(d+2)

faces still approach a round sphere when the radius goes to (d2—d—8)

infinity while the surface(4.4) remains different from a +—(a—1)(b—1)}
round sphere even at infinite (d=1)

+0((a—1),(b—1))3 (4.9

5 would like to thank Rob Myers for the suggestion to considerfor the functionay(a;) appearing in Eq(4.7). On the other
this example and for many comments on the subject of this sectiohand, we have
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ab 4(d—3)%(d—2)(d+1)
_2 _ d-5
V d r Ed,]_ (49) j rS d(d+2) r d-1
for the volume ofM¢ and ) )
X| (a=1)“+(b—1)— (a=1)(b—1)].
(d-1) (d=1)
A=rd71s 1+ 5 [(a—1)%+(b—1)] (4.12
(d—1) 2_ We see that the divergence of Eg.11) is exactly canceled

+————((a—1)%+(b—1)? +2( ) in second order by the countertef®127) so that in the func-
><(a—1)(b—1)+O((a—1),(b—1))3} (4.10 Wep+Wert Wep=r""?24_; O((a—1),(b—1))®

. . the divergence may appear only in the third and higher or-
for the area of the surfacg, . We are now in a position t0  4ars in @—1) and p—1). In fact this is true in general
compute the regularized gravitational acti@2),(2.3: when all parametera;} are different from 1. In this case
1 2(d—1) the expressiong4.11l) and (4.12 are proportional to the
Wey+ W= — —( j 2K — —*A) same symmetric combination ¥;(a;—1)?—[1/(d
167G\ Js di —1)]Zi4+j(ai—1)(aj—1) and the cancellation of the diver-
gences is evident.

We find that Presumably, this can be continued further: we should in-
4(d?—1) troduce morghigher order in the boundary curvatyieun-
WEH+Wct:_m (a—1)%+(b—1)? terterms in order to cancel the largedivergence in next

orders in @;—1). What we get then is an infinite series of
the counterterms so that the largdivergence of the action
(a— 1)(b—1)) ri=2s, ;. cancels in all orders ina—1). This would mean that once
the gravitational action includes the whole infinite series of
(4.1  the counterterms it vanishes for flat space for any choice of
the (topologically equivalent to spherboundary. We expect
that the structure of this infinite series is universal and deter-
mined only by the topology of the boundary. It would be
interesting to get more terms in this series and see if it con-
verges to some compact expression of the boundary curva-

S (d-1)

We see that Eq(4.1]) is still divergent but it is now qua-
dratic in @—1) and p—1). So the counterterrt2.3) can-
cels the larger divergence of Eq(4.5 in zero and first
ordersin @—1) and p—1). Is it possible to find a counter-
term which may cancel the divergen¢e1l) in the second o
orderin @—1) and p—1)? The answer is yes. The required
counterterm is exactly the terf3.27 which we introduced
earlier in order to cancel the divergences for the spheroidal
boundary. Even the overaltlependent on dimensial) co- | would like to thank Andrei Barvinskii and Kostas Sken-
efficient in Eq.(3.27) takes the right form. In order to prove deris for useful discussions and Robert Mann for reading the
the last statement we present here the result of the integratiananuscript and valuable comments. | am especially grateful
of the invariant SERizj—[ll(d—l)R2 over the surface to Rob Myers for reading the manuscript, many interesting
(4.4). In the second order ina(—1) and o—1) it reads comments, and encouragement.
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